Chemical Reactions Between Fe and H$_2$O up to Megabar Pressures and Implications for Water Storage in the Earth’s Mantle and Core

Liang Yuan1, Eiji Ohtani1,2, Daijo Ikuta1, Seiji Kamada1, Jun Tsuchiya3, Hirao Naohisa4, Yasuo Ohishi4, and Akio Suzuki1

1Department of Earth and Planetary Material Sciences, Tohoku University, Sendai, Japan, 2V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia, 3Geodynamics Research Center, Ehime University, Matsuyama, Japan, 4Japan Synchrotron Radiation Research Institute, Sayo, Japan

Abstract

We investigated the phase relations of the Fe-H$_2$O system at high pressures based on in situ X-ray diffraction experiments and first-principles calculations and demonstrate that FeH and FeO are present at pressures less than \sim78 GPa. A recently reported pyrite-structured FeO$_2$ was identified in the Fe-H$_2$O system at pressures greater than \sim78 GPa after laser heating. The phase observed in this study has a unit cell volume 8%–11% larger than that of FeO$_2$, produced in the Fe-O binary system reported previously, suggesting that hydrogen might be retained in a FeO$_2$H$_x$ crystal structure. Our observations indicate that H$_2$O is likely introduced into the deep Earth through reaction between iron and water during the accretion and separation of the metallic core. Additionally, reaction between Fe and H$_2$O would occur at the core-mantle boundary, given water released from hydrous subducting slabs that intersect with the metallic core. Accumulation of volatile-bearing iron compounds may provide new insights into the enigmatic seismic structures observed at the base of the lower mantle.

1. Introduction

The Earth’s core is mainly composed of iron. However, the density of the core, as revealed by seismological observations, is lower than that of pure iron at the corresponding conditions (Birch, 1952). It is therefore invoked that liquid elements are potentially important ingredients in the core. Among the light elements, hydrogen tends to be excluded as one of the important components in the core due to its high volatility and low solubility in iron at ambient pressure, despite the fact that it is a cosmochemically abundant element. Experiments and thermodynamic calculations suggest that significant amount of hydrogen can be dissolved into iron at high pressures (Antonov et al., 1998; Badding et al., 1991; Fukai, 1984). During accretion and core formation, reaction between iron and water may produce FeHx, thus incorporating significant amounts of hydrogen into the core (Badding et al., 1992; Ohtani et al., 2005; Okuchi, 1997). Reaction between iron and water would also be expected at the core-mantle boundary (CMB), as recent studies indicate that hydrous phases may be stable at deepest lower mantle conditions (Ohira et al., 2014; Sano et al., 2008; Suzuki et al., 2000; Walter et al., 2015).

Interest in both the Fe-H and Fe-O binary systems has been enhanced by the recent discoveries of new high-pressure forms of iron hydrides and iron oxides. Experiments and first-principles calculations have suggested that a series of iron hydrides, for example, FeH (dhcp, hcp, and fcc) (Hirao et al., 2004; Isaev et al., 2007; Narygina et al., 2011), FeH$_2$ (tetragonal), FeH$_3$ (cubic), and FeH$_5$ (tetragonal) (Pépin et al., 2014, 2017) could be stabilized at high pressures in the Fe-H system. Iron oxides with complex crystal structures develop in the Fe-O binary system as well under extreme conditions. Beyond the three, well-known, simple iron oxides, that is, Fe$_{1-x}$O wüstite, Fe$_3$O$_4$ magnetite, and Fe$_2$O$_3$ hematite, there is a growing number of experimental studies that have identified new high-pressure and high-temperature iron oxides, such as h-Fe$_2$O$_3$ (Fei et al., 1999), Fe$_4$O$_5$ and Fe$_5$O$_6$ (Lavina et al., 2011; Lavina & Meng, 2015), and Fe$_7$O$_9$ (Sinmyo et al., 2016) that could be stable at conditions relevant to the Earth’s interior. The iron peroxide FeO$_2$, with a pyrite structure (space group Pa$ar{3}$), was found to be stable at high pressures (Weerasinghe et al., 2015) and was recently synthesized through the reaction between hematite (Fe$_2$O$_3$) and oxygen (O$_2$) (Hu et al., 2016). Further studies suggest that goethite (α-FeOOH) would transform into a pyrite-type phase, a hydrogen-bearing iron peroxide FeO$_2$H$_x$ (with x from 0 to 1), with losing certain amount of hydrogen (Hu et al., 2017;
Zhu et al., 2017) or without loss of any hydrogen (Nishi et al., 2017) at pressures >70–80 GPa upon laser heating.

The Fe-H₂O system was studied at pressures below 84 GPa and revealed that iron oxide FeO and iron hydride FeHₓ are the stable run products (Ohtani et al., 2005). Recent studies reported that hydrogen-bearing iron peroxide FeO₂Hₓ is also stable in the same system at higher pressures (Liu et al., 2017; Mao et al., 2017).

The diverse populations of high-pressure iron compounds (iron oxides, iron hydrides, hydrogen-bearing iron peroxides, etc.) make it desirable to constrain the stable-phase assemblages in the Fe-H₂O system in an expanded pressure range. Here by using in situ X-ray diffraction (XRD) observations and first-principles calculations, we have examined the chemical reactions between iron and water in a wide pressure–temperature range to clarify the phase relations in the Fe-H₂O system.

2. Methods

Iron powder and liquid water were compressed to the target pressures using diamond anvil cells and then laser heated to target temperatures. In situ synchrotron powder XRD experiments were performed at BL10XU of Spring-8, Japan (Ohishi et al., 2008). We also conducted first-principles calculations to examine the transition of stable run products from FeO + FeH to FeO₂H + Fe. See supporting information for details of methods.

3. Results and Discussion

The phase relations of the Fe-H₂O system were investigated at pressure-temperature conditions of 65–115 GPa and 1,700–2,400 K. The experimental conditions and results are summarized in Table 1. In addition to the phases formed from starting materials initially loaded into the sample chamber, most XRD patterns contain diffraction lines from thermal insulators (if used), as well as contributions from tungsten gaskets.

At pressures <78 GPa, we found that FeO and FeHₓ were the stable run products of the reaction between iron and water, which is consistent with the results of Ohtani et al. (2005). At pressures between 78 GPa and 85 GPa, we found iron oxide FeO coexisting with the iron peroxide FeO₂Hₓ (Hu et al., 2016). The iron peroxide FeO₂Hₓ adopts the crystal structure of pyrite FeS₂ (space group Pa₃) and its unit cell volumes are 8%–11% larger than that of anhydrous FeO₂ synthesized from Fe₂O₃ + O₂ (Hu et al., 2016). These features are consistent with hydrogen being dissolved in the crystal structure of FeO₂ and FeO₂Hₓ. Note that a more recent

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Conditions and Results of the Reaction Between Fe and H₂O</td>
</tr>
<tr>
<td>Pressure (GPa)</td>
</tr>
<tr>
<td>Run</td>
</tr>
<tr>
<td>KA7_001</td>
</tr>
<tr>
<td>MEM_004</td>
</tr>
<tr>
<td>MEM_003</td>
</tr>
<tr>
<td>CCTS_002⁷</td>
</tr>
<tr>
<td>CCTS_005⁷</td>
</tr>
<tr>
<td>TS2_002</td>
</tr>
<tr>
<td>TS3_003</td>
</tr>
<tr>
<td>TS4_004</td>
</tr>
<tr>
<td>ccts3_003</td>
</tr>
<tr>
<td>ccts3_002</td>
</tr>
<tr>
<td>ccts2_002</td>
</tr>
<tr>
<td>ccts2_003</td>
</tr>
<tr>
<td>ccts2_004</td>
</tr>
<tr>
<td>ccts2_005</td>
</tr>
<tr>
<td>CCXN_004⁷</td>
</tr>
<tr>
<td>CCXN_006⁷</td>
</tr>
<tr>
<td>CCXN_005⁷</td>
</tr>
<tr>
<td>CCT_001²⁵</td>
</tr>
</tbody>
</table>

²SiO₂ loaded as thermal insulator was not detected during experiments. ³No thermal insulator was loaded. ⁴Starting materials were hematite (Fe₂O₃) and water. ²⁵Phases in parenthesis indicate materials (SiO₂ or Al₂O₃) used as thermal insulator and gasket identified by XRD.
investigation showed that FeOOH, with a pyrite structure, could be stable in the lower mantle (Nishi et al., 2017). At pressures >85 GPa, FeO2Hx and FeHx (hcp or dhcp) were readily indexed as the stable run products. Our observations agree with the results of Mao et al. (2017) and Liu et al. (2017), where FeO2Hx was synthesized from the reactions between iron/iron oxides (Fe, FeO, Fe2O3, etc.) and water (H2O). However, the FeO2Hx in our study has larger unit cell volumes compared to that of previous studies (Figure 2a), which might be interpreted as the results of different starting materials and experimental temperature conditions.

The in situ XRD patterns obtained at 113 GPa clearly showed diffraction peaks that can be unambiguously assigned to a simple cubic symmetry with a Pa3 space group (Figure 1a). All the symmetry-allowed spots for Pa3-structured FeO2Hx were present. FeO2Hx developed sharp diffraction lines within 15 min, and its peaks grew over a 90 min laser heating. The intensities of the diffraction lines from H2O (ice X), however, did not decline significantly. After temperature quenching, we checked the whole sample chamber by scanning the X-ray beam, and FeO2Hx was found as the dominant phase. While H2O (ice X) remained due to the large volume of water, as comparison to the initial iron, loaded into the sample chamber. The experiments were kept at pressure for 2 weeks and a second round of XRD analyses was conducted. Interestingly, we found that the unit cell volume of the tungsten gasket obviously expanded in certain area, which probably was induced by the incorporation of hydrogen. We speculate that free hydrogen was formed during laser heating and it dissolved into the tungsten gasket within this limited time duration; a Raman spectroscopy analysis on this sample could not detect the existence of free hydrogen.

At pressures between 85 GPa and 78 GPa, the FeO2Hx displayed relatively weak diffraction lines compared to that at 113 GPa although the fitted unit cell volumes matched with that of recent experimental results and theoretical calculations (Hu et al., 2017; Nishi et al., 2017). The diffraction lines developed by FeO2Hx completely disappeared at pressures 65 GPa, 69 GPa, and 74 GPa.

In one further experiment, we compressed hematite (Fe2O3) and water to 97 GPa and laser heated it to ~2,000 K for ~30 min. XRD showed that the pyrite-structured FeO2Hx formed, indicating the following reaction: Fe2O3 + H2O \rightarrow FeO2Hx.

Hu et al. (2017) found that the volumes of pyrite-structured FeO2 produced from the dehydration of goethite FeOOH are larger than that of pure FeO2 synthesized via the reaction between Fe2O3 and O2 in the pressure range of 71–133 GPa. An obvious scattering of the compression data was attributed to the variable nonstoichiometric composition. The volume of FeO2Hx in this study is also 8%–11% larger than that of pure FeO2 grown from the Fe2O3 + O2 system (Hu et al., 2016) (Figure 2a). Assuming that the volume of FeO2Hx expands linearly in proportion to the amount of hydrogen dissolved in interstitial sites, the hydrogen concentration in this iron compound can be estimated, based on the following formula (Hu et al., 2017):

$$x = \left[V_{x, \text{exp}} - V_{0, \text{exp}} \right] / \left[V_{1, \text{cal}} - V_{0, \text{cal}} \right]$$

where $V_{x, \text{exp}}$ is the observed volume of FeO2Hx, $V_{0, \text{exp}}$ is the volume of pure FeO2 synthesized in the Fe2O3-O2 system (Hu et al., 2016), and $V_{1, \text{cal}}$ and $V_{0, \text{cal}}$ denote the volume of FeO2H and FeO2 calculated from first-principles methods (Nishi et al., 2017). Our experimentally determined volumes for FeO2Hx are bracketed by the calculated values given by Nishi et al. (2017) and are comparable to the experimental results from Figure 1.
Our first-principles calculations indicate that the pyrite-structured FeO\textsubscript{2}H + 2Fe has lower enthalpies compared to 2FeO + FeH throughout the explored pressure range of 50–150 GPa (Figure S1 in the supporting information). Previous calculations suggest that \(\epsilon \)-FeOOH transforms into the pyrite-structured FeO\textsubscript{2}H at around 70 GPa (Nishi et al., 2017). Within the stability field of pyrite-structured FeO\textsubscript{2}H, instead of FeO + FeH, the pyrite-structured FeO\textsubscript{2}H would become one of the stable run products of Fe + H\textsubscript{2}O. Whereas the calculated enthalpy of FeO\textsubscript{2}H + 2Fe is lower than that of 2FeO + FeH at pressures less than 78 GPa. This inconsistency is most likely induced by the exchange-correlation functional used in the calculations. The standard generalized gradient approximation or local density approximation often fails to reproduce the stability of iron oxide systems (e.g., Otte et al., 2011). In addition, uncertainty of pressure measurement, stress in the sample chamber, and kinetics of the reaction may also contribute to the inconsistency between experimental and computational results.
At 78 GPa, the molar volume for FeO is 9.04 cm3/mol (Fischer et al., 2011), FeH is 6.25 cm3/mol (Pépin et al., 2014), and Fe is 5.28 cm3/mol (Dewaele et al., 2006). Using the measured volume of 13.60 cm3/mol for FeO$_2$H in this work, the reaction has a volume reduction of 0.7%. Pressure lowers the Gibbs free energy of the reaction by $\Delta G = \int \Delta V dP$, thus a transition for the stable run products from $2\text{FeO} + \text{FeH} \rightarrow \text{FeO}_2\text{H} + 2\text{Fe}$ is likely to occur at high pressures within the stability field of FeO$_2$H. This volume change, however, tends to become positive as FeO$_2$H becomes less compressible relative to FeO + FeH at pressures higher than ~100 GPa. The crossover of the volume change, as reproduced by our first-principles calculations (Figure S1), could potentially stabilize FeO + FeH under the deep core conditions.

Phase relations for Fe-H$_2$O are summarized in the P-T phase diagram (Figure 3a). Our experimental results demonstrate that iron and water would react along geotherms of a typical mantle and that for a cold subducting slab (Brown & Shankland, 1981; Kirby et al., 1996). We conclude that FeO + FeH is the stable assemblage <78 GPa, whereas FeO$_2$H + FeH becomes stable >78 GPa.

4. Geophysical Implications

Experimental and theoretical studies of FeH$_x$ suggest that such an iron hydride can satisfy the density and sound velocity of the Earth's core (Hirao et al., 2004; Mao et al., 2004; Sakamaki et al., 2016; Shibazaki et al., 2012; Tagawa et al., 2016). A primary mechanism for including hydrogen into the Earth’s core might be through reaction between iron and water during core formation. FeH$_x$ has a much lower melting temperature than pure iron by several hundreds of degrees (Sakamaki et al., 2009). The dissolution of hydrogen into iron can greatly lower its melting temperature, which might be a prerequisite for efficiently segregating heavy metal from surrounding silicates (Stevenson, 1990). In the shallow mantle, FeO is absorbed into the surrounding silicates, while FeH$_x$ is considered to be unreactive with surrounding silicates (Ohtani et al., 2005). Due to the strong Fe-H bonding, FeH$_x$ is unlikely to decompose and can exist in a molten state at increasing temperatures (Badding et al., 1992; Nishi et al., 2017; Okuchi, 1997). Therefore, hydrogen can be stably transported by FeH$_x$ to great depths in the Earth. With its notably high density (~6.897 g/cm3 at 113 GPa) in comparison to the density (~5.357 g/cm3) of surrounding silicates, FeO$_2$H would normally sink into the base of the mantle. However, whether pyrite-structured FeO$_2$H can deliver hydrogen into the deep of the proto-Earth depends on its thermal stability. The present experiment implies a coexistence of FeH$_x$ and FeO$_2$H at pressure greater than ~80 GPa, which begins to appear in a proto-Earth at a diameter greater than 4,500 km. The unit cell volumes for FeO$_2$H obtained in this study are consistent with that reported by Nishi et al. (2017) and this pyrite phase may be stoichiometric in composition, that is, $x \sim 1$, which indicates very small amount of hydrogen would be released during its transportation to the base of the mantle.

Silicates such as pyroxene, garnet, and Al-bearing bridgmanite at high pressures can incorporate ferric iron (Frost et al., 2004; McCammon, 1997; Rohrbach et al., 2007). Metallic iron could be saturated in the deep mantle because of charge disproportionation where Fe$^{2+}$ (silicates) \rightarrow Fe$^{3+}$ (silicates) + Fe0 (metal). Experimental evidence is in line with the discovery of metallic iron phases included in natural diamonds presumably originated from the mantle transition zone or uppermost lower mantle (Smith et al., 2016). Note that recently reported aluminous bridgmanite has an unexpected drop of Fe$^{3+}$ content in the midmantle of 1,100 to 1,700 km depths (Shim et al., 2017). The oxidation state change of Fe in bridgmanite will lead to a lower
metallic iron content in this region. Metallic iron may play the role of storing large amount of water in the deep mantle as hydrogen was suggested to be favorably partitioned into metallic iron rather than the coexisting silicate mineral (Ohtani et al., 2009). At the top of the lower mantle, dehydration melting would occur when mantle transition zone material is swept down to the lower mantle by mantle convection due to a large contrast of water partitioning between ringwoodite and bridgmanite (Schmandt et al., 2014). Additionally, dense hydrous magnesium phases, for example, superhydrus phase B and phase D, in subducting slabs that are stagnating near 660 km seismic discontinuity might go through hydrous melting (Ghosh & Schmidt, 2014; Ohtani et al., 2003). Dehydration melting of phase δ-H solid solutions would be expected in peridotite system at 60–70 GPa (Walter et al., 2015). The produced hydrous melts would react with the saturated metallic iron producing assemblages of FeH and iron oxides. The aluminous hydrous phase, δ AlOOH, was suggested to be a stable water reservoir in the lower mantle (Sano et al., 2008). At pressures greater than ~78 GPa, δ AlOOH would react with metallic iron to form FeHx and FeO₂Hx. However, FeO₂Hx may not exist independently; it is more likely stabilized as a solid solution with δ AlOOH under deep mantle conditions, as revealed by the experiments of Nishi et al. (2017).

The CMB might be a critical location where water can meet with iron and extensive reactions might occur between them (Mao et al., 2017). Postperovskite containing 1–2 wt.% H₂O at D* region was suggested to be stable based on ab initio calculations (Townsend et al., 2015). In the AI-bearing systems, hydrogen favors postperovskite over perovskite with water partition coefficients ranging from 3:1 to 8:1 (Townsend et al., 2016), although the results need to be confirmed experimentally. Hydrous melts or fluids might be generated if hydrous postperovskite is swept by mantle convection through the postperovskite-bridgmanite phase boundary due to potentially high solubility of water in postperovskite and the large contrast in waterportioning coefficient between postperovskite and bridgmanite. The hydrous minerals δ AlOOH, phase H MgSiO₃(OH)₂, and their solid solutions can be stable up to CMB conditions (Ohira et al., 2014; Sano et al., 2008; Suzuki et al., 2000; Walter et al., 2015). Therefore, water could be transported to the deep lower mantle and core by hydrous phases in cold subducting slabs. However, these hydrous phases are thermally unstable when they are stagnant at the CMB due to the large geothermal gradient on the mantle side of this boundary. The released water (or hydrous melts) can react with the core and likely form the assemblage of FeO₂Hx + FeHx. The thermal stability of FeO₂Hx is as yet unknown. FeO₂Hx might be less favored as one of the products of the reaction between δ AlOOH and iron because δ AlOOH has such a wide stability field (Sano et al., 2008) and the dehydration temperatures of δ AlOOH very likely exceed the thermal stability of FeO₂Hx. The δ AlOOH may incorporate significant amounts of Si⁴⁺ and Mg²⁺ in the lower mantle (Ohira et al., 2014), which may reduce its thermal stability, and therefore, it can dehydrate at much lower temperatures where FeO₂Hx would be stable.

Sound velocity of FeO₂Hx may provide new insights into seismic structure of the ultralow velocity zone. The sound velocities for FeO₂Hx have been measured at 133 GPa, 300 K with P waves velocity V_p = 11.32 km/s and S waves velocity V_s = 4.50 km/s (Liu et al., 2017), which are relatively slower than that in the ambient silicate mantle. In view of the scarcity of experimental elastic data, here we also estimate the bulk sound velocity V_Φ of FeO₂Hx according to the following equation:

\[V_\Phi = (\frac{K_s}{\rho})^{1/2} \]

where K_s is the adiabatic bulk modulus and ρ is the density. K_s is related to the isothermal bulk modulus, K_T, by \[K_s = K_T(1 + \alpha T) \approx K_T \] at room temperature conditions. K_T and ρ were obtained using the compressibility data of FeO₂Hx from the present study and the data of experiments and first-principles calculations (Nishi et al., 2017). At ~133 GPa, the bulk sound velocity of FeO₂Hx is estimated to be 10.37 km/s, close to 10.06 km/s calculated from the experimental data of Liu et al. (2017). A difference of the bulk sound velocity can be attributed to the different hydrogen contents as incorporation of hydrogen increases V_p whereas decreases V_s of Fe₂O₃H (Liu et al., 2017). Oxygen fugacity may control the hydrogen contents in FeO₂Hx, which in turn affect the sound velocities of this phase. The reaction of iron and water explored here might better simulate that occurs at the CMB where metallic iron from the core reacts with fluids released from the slabs at the bottom of the lower mantle. It might become critical to explore the properties of FeO₂Hx under oxidation conditions applicable to the CMB. The bulk sound velocities of FeO₂Hx are slower than that of bridgmanite (MgSiO₃) and the preliminary reference Earth model values (Dziewonski & Anderson, 1981) at the base of the lower mantle (Figure 3b). FeO₂Hx thus could be a candidate for the
distinct ultralow velocity zone. Furthermore, FeO$_2$H$_x$ produced at the CMB could be linked to the global scale events, such as the Great Oxidation Event and geodynamic instability of the mantle materials (Mao et al., 2017). Testing these hypotheses must await more studies on its physical and chemical properties, for example, high-temperature sound velocities and thermal stability.

5. Conclusion

We investigated the reaction of H$_2$O and Fe at deep Earth conditions using in situ X-ray diffraction experiments and first-principles calculations. We found that the stable run products are FeO and FeH$_2$ at pressures < 78 GPa, and FeO$_2$H$_x$ and FeH$_x$ at pressures > 78 GPa. An 8%–11% larger volume than pure FeO$_2$, indicates that hydrogen is retained in the crystal structure of FeO$_2$H$_x$. We suggest that large amount of water might have been introduced into depths during the accretion and separation of the metallic core via iron-water reaction. Reaction between iron and water may also provide new insights into the enigmatic seismic structures at the CMB.

References

